Dynamic Programming for Boolean decisions

Lecture 07.03

by Marina Barsky

Mix tapes

Subset sum

Mixtapes

\square The mixtape problem is inspired by making musical mixes on cassettes (and later CDs)
\square Given a set of songs with their durations, the question is whether these songs can be divided into 2 subsets where the total duration of each subset is the same

Mixtape problem

Input: The durations of n songs $d_{1}, d_{2}, \ldots, d_{n}$ in minutes (integers).
Output: Yes, if the songs can be divided into two groups, such that each group has the same total duration. No, otherwise.

Sample problem instance

	1	2	3	4	5	6	7
\min	3	2	3	2	2	5	3

A total of 7 songs given with their durations.
The output for this instance of the problem is 'yes'. This is because the songs can be divided into two groups that both have a total duration of 10 min .

3	2	3	2	2	5	3
1	2	3	4	5	6	7

The blue and red songs have the same total duration of 10 min .

DP solution: brainstorming

\square What would help us to know if a set of numbers can be divided into 2 subsets with equal sums?

How can we find out if there is a subset with a given sum?
\square What are optimal subproblems?

Think of an optimal solution to a

 subset sum\square lf there is a subset with total duration D , and it contains song i, then there also should be a subset with duration $\mathrm{D}-\mathrm{d}_{\mathrm{i}}$

\square As always, we can start by checking if all possible durations from 1 to D can be obtained from a current set, and we will reuse this knowledge to obtain an answer for duration D

Example

3	2	1	4	1	5
1	2	3	4	5	6

\square First, we compute total duration:

$$
3+2+1+4+1+5=16
$$

\square The task becomes to find out if there is a subset that sums up to $16 / 2=8$

We will try methodically to fit each song into the solution, checking if the following total durations are possible: $0,1,2,3,4,5,6,7$ and finally 8.
\square The check will produce a boolean value: $\mathrm{Y}($ True) or $\mathrm{N}($ False)

Create DP table

3	2	1	4	1	5

$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$

Total duration \rightarrow	0	1		2	3	4	5	6		7	8
$\mathrm{d}_{1}(3)$											
$\mathrm{d}_{2}(2)$											
$\mathrm{d}_{3}(1)$											
$\mathrm{d}_{4}(4)$											
$\mathrm{d}_{5}(1)$											
$\mathrm{d}_{6}(5)$											

Base condition

Is it possible to create a subset with a total duration $\mathbf{0}$?
Yes, just do not take any song.

Total duration \rightarrow	0	${ }^{1}$	2	3	3	4	5	6	7
$d_{1}(3)$	T								
$d_{2}(2)$	T								
$d_{3}(1)$	T								
$d_{4}(4)$	T								
$d_{5}(1)$	T								
$d_{6}(5)$	T								

What durations are possible with song 1 ?

Using only the first song with duration 3 , is it possible to create a subset with a total duration 1,2,3,4...?

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$d_{1}(3)$	T	F							
$d_{2}(2)$	T								
$d_{3}(1)$	T								
$d_{4}(4)$	T								
$d_{5}(1)$	T								
$d_{6}(5)$	T								

What durations are possible with song 1 ?

Using only the first song with duration 3 , is it possible to create a subset with a total duration 1,2,3,4...?

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$d_{1}(3)$	T	F	F						
$d_{2}(2)$	T								
$d_{3}(1)$	T								
$d_{4}(4)$	T								
$d_{5}(1)$	T								
$d_{6}(5)$	T								

What durations are possible with song 1 ?

Using only the first song with duration 3 , is it possible to create a subset with a total duration 1,2,3,4...?

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$d_{1}(3)$	T	F	F	T					
$d_{2}(2)$	T								
$d_{3}(1)$	T								
$d_{4}(4)$	T								
$d_{5}(1)$	T								
$d_{6}(5)$	T								

What durations are possible with song 1 ?

Using only the first song with duration 3 , is it possible to create a subset with a total duration 1,2,3,4...?

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(3)$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(2)$	T								
$\mathrm{d}_{3}(\mathbf{1})$	T								
$\mathrm{d}_{4}(4)$	T								
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(5)$	T								

What durations are possible with songs 1 and 2?

Using only song 1 (duration 3) and/or song 2(duration 2), it is still not possible to create a subset with total duration 1.

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$d_{1}(3)$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(2)$	T	F							
$\mathrm{d}_{3}(1)$	T								
$\mathrm{d}_{4}(4)$	T								
$\mathrm{d}_{5}(1)$	T								
$\mathrm{d}_{6}(5)$	T								

What durations are possible with songs 1 and 2?

Using only song 1 (duration 3) and song 2(duration 2), it is not possible to create a subset with total duration 1, but it is possible to create a subset with total duration 2

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$d_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{~d}_{2}(\mathbf{2})$	T	F	T						
$\mathrm{d}_{3}(\mathbf{1})$	T								
$\mathrm{d}_{4}(\mathbf{4})$	T								
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

What durations are possible with songs 1 and 2?

Using only d1 and d2, can we have a subset with total duration 3?
Yes, we already know that we can do it even without d2

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(\mathbf{2})$	T	F	T	T					
$\mathrm{d}_{3}(\mathbf{1})$	T								
$\mathrm{d}_{4}(4)$	T								
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

What durations are possible with songs 1 and 2?

How do we check if a subset sum 4 is possible? We know that it was False when we used d1 only, so if we use d2, then we need to check if a subset of (4-2) was possible. It was not.

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(3)$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(2)$	T	F	T	T	F				
$\mathrm{d}_{3}(\mathbf{1})$	T								
$\mathrm{d}_{4}(4)$	T								
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(5)$	T								

What durations are possible with songs 1 and 2?

To check for $\mathrm{d}=5$, take item d 2 (2) and see if duration 5 - 2 was possible with the previous item(s)

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(\mathbf{2})$	T	F	T	T	F	T	F	F	F
$\mathrm{d}_{3}(\mathbf{1})$	T								
$\mathrm{d}_{4}(\mathbf{4})$	T								
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

Considering songs 1,2 , and 3

1,2,3 are possible.
What about 4? Current item d3 has duration 1. Is it possible to have a duration (4-1) with the other 2 items? Yes

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(\mathbf{2})$	T	F	T	T	F	T	F	F	F
$\mathrm{d}_{3}(\mathbf{1})$	T	T	T	T	T				
$\mathrm{d}_{4}(4)$	T								
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

Considering songs 1,2, and 3

Using only items d1, d2, d3 we get the following boolean answers.

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(\mathbf{2})$	T	F	T	T	F	T	F	F	F
$\mathrm{d}_{3}(\mathbf{1})$	T	T	T	T	T	T	T	F	F
$\mathrm{d}_{4}(\mathbf{4})$	T								
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

Considering songs 1,2,3,4

For d4(4) we do not even need to consider this item for durations $1,2,3,4,5,6$ - we could make these subsets even without item d4(4).

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(\mathbf{2})$	T	F	T	T	F	T	F	F	F
$\mathrm{d}_{3}(\mathbf{1})$	T	T	T	T	T	T	T	F	F
$\mathrm{d}_{4}(\mathbf{4})$	T	T	T	T	T	T	T		
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

Considering songs 1,2,3,4

What about 7? Fit d4(4) and see if (7-4) was True.

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(\mathbf{2})$	T	F	T	T	F	T	F	F	F
$\mathrm{d}_{3}(\mathbf{1})$	T	T	T	T	T	T	T	F	F
$\mathrm{d}_{4}(\mathbf{4})$	T	T	T	T	T	T	T	T	
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

Considering songs 1,2,3,4

Same holds for total duration 8 .

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(\mathbf{2})$	T	F	T	T	F	T	F	F	F
$\mathrm{d}_{3}(\mathbf{1})$	T	T	T	T	T	T	T	F	F
$\mathrm{d}_{4}(\mathbf{4})$	T	T	T	T	T	T	T	T	T
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

Is total duration 8 possible?

At this point we can stop. We know that it is possible to form a subset with a total duration 8 even using only the first 4 items. But what is this subset?

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(\mathbf{2})$	T	F	T	T	F	T	F	F	F
$\mathrm{d}_{3}(\mathbf{1})$	T	T	T	T	T	T	T	F	F
$\mathrm{d}_{4}(\mathbf{4})$	T	T	T	T	T	T	T	T	T
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

Recovering the subset with sum 8: trace back

The subset clearly includes item d4-without it 8 was not possible

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(\mathbf{2})$	T	F	T	T	F	T	F	F	F
$\mathrm{d}_{3}(\mathbf{1})$	T	T	T	T	T	T	T	F	F
$\mathrm{d}_{4}(\mathbf{4})$	T	T	T	T	T	T	T	T	T
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

Recovering the subset with sum 8: trace back

If it includes item 4, we need to look at total duration (8-4). This one only became True when we added item d3.

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(\mathbf{2})$	T	F	T	T	F	T	F	F	F
$\mathrm{d}_{3}(\mathbf{1})$	T	T	T	T	T	T	T	F	F
$\mathrm{d}_{4}(\mathbf{4})$	T	T	T	T	T	T	T	T	T
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

Recovering the subset with sum 8: trace back

If the solution includes item d3(1), we need to look at total duration (4-1). This one is True because a previous item produced True. This item was d1(3)

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(\mathbf{3})$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(\mathbf{2})$	T	F	T	T	F	T	F	F	F
$\mathrm{d}_{3}(\mathbf{1})$	T	T	T	T	T	T	T	F	F
$\mathrm{d}_{4}(\mathbf{4})$	T	T	T	T	T	T	T	T	T
$\mathrm{d}_{5}(\mathbf{1})$	T								
$\mathrm{d}_{6}(\mathbf{5})$	T								

Answer: Yes, it is possible to create 2 subsets with equal total duration
$\mathrm{d} 1(3)+\mathrm{d} 3(1)+\mathrm{d} 4(4)=\mathrm{d} 2(2)+\mathrm{d} 5(1)+\mathrm{d} 6(5)$
$3+1+4=2+1+5$

Total duration \rightarrow	0	1	2	3	4	5	6	7	8
$\mathrm{~d}_{1}(3)$	T	F	F	T	F	F	F	F	F
$\mathrm{d}_{2}(2)$	T	F	T	T	F	T	F	F	F
$\mathrm{d}_{3}(1)$	T	T	T	T	T	T	T	F	F
$\mathrm{d}_{4}(4)$	T	T	T	T	T	T	T	T	T
$\mathrm{d}_{5}(1)$	T								
$\mathrm{d}_{6}(5)$	T								

Game of Rocks

Optimal game strategy

Game: 1-2 rocks

- 2 players
- 2 piles of rocks:

with n and m rocks respectively
- Each turn, one player may take either 1 rock (from either pile) or 2 rocks (one from each pile)
- Once the rocks are taken, they are removed from play
- The player that takes the last rock wins

Winning strategy with DP

To find the winning strategy for the $m+n$ game, we first construct an mxn table R.

If Player 1 can always win the $n+m$ game, then we would say $R(n, m)=W$, but if Player 1 has no winning strategy against a player that always makes the right moves, we would write $R(n, m)=L$.
\square Computing $R(n, m)$ for arbitrary n and m seems difficult, but we can build on smaller values.

DP table for game outcomes

Simple subproblems first

> Notably $R(0,1), R(1,0)$, and $R(1,1)$, are clearly winning propositions for Player 1 since with a single move Player 1 can win.
> Thus, we fill in entries $(1,1),(0,1)$, and $(1,0)$ as W .

Solve larger subproblems based on solutions to the smaller problems

> In the $(2,0)$ case, the only move that Player 1 can make leads to the $(1,0)$ case that, as we already know, is a winning position for his opponent.
> A similar analysis applies to the $(0,2)$ case.

Solve larger subproblems based on solutions to the smaller problems

$>$ In the $(2,1)$ case, Player 1 can make 3 different moves that lead respectively to the games of $(1,1),(2,0)$, or $(1,0)$.
> One of these cases, $(2,0)$, leads to a losing position for his opponent and therefore $(2,1)$ is a winning position.
$>\quad$ The case $(1,2)$ is symmetric to $(2,1)$

	01	1	2	3	45	56	67	78	8	10
0		W	L							
1	W	W	W							
2		W								
3										
4										
5										
6										
7										
8										
9										
10										

Solve larger subproblems based on solutions to the smaller problems

> In the $(2,2)$ case, Player 1 can make three different moves that lead to entries (2 , $1),(1,2)$, and (1, 1).
> All of these entries are winning positions for his opponent and therefore $R(2,2)=L$.

Fill DP table with game outcomes

> We can proceed filling in R in this way by noticing that for the entry (i, j) to be L, all the entries above, diagonally to the left, and directly to the left, must be W.
> These entries:
((i-1, j), (i-1, j-1), (i, j-1))
correspond to the three possible moves that Player 1 can make.
$\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

Rocks: winning strategy

The Rocks algorithm determines if Player 1 wins or loses.

- If Player 1 wins in an $n+m$ game, Rocks returns W. If Player 1 loses, Rocks returns L.
\square We introduce an artificial initial condition, $\mathrm{R}(0,0)$ $=L$ to simplify the pseudocode.

Algorithm Rocks(n,m)

$R[0,0] \leftarrow L$
for i from 1 to n :
if $R[i-1,0]=W$:

$$
R[i, 0] \leftarrow L
$$

else:

$$
R[i, 0] \leftarrow W
$$

for j from 1 to m :
\# initialize rows
if $R[0, j-1]=W$:
$R[0, j] \leftarrow L$
else:

$$
R[0, j] \leftarrow W
$$

for i from 1 to n :
for j from 1 to m :
\# fill DP table
if $R[i-1, j-1]=W$ and $R[i, j-1]=W$ and $R[i-1, j]=W$:
$R[i, j] \leftarrow L$
else:

$$
R[i, j] \leftarrow W
$$

return $R[n, m]$

Using DP table for best strategy or game AI

> We can use the DP table to always play the winning strategy.
> If $\mathrm{R}(\mathrm{n}, \mathrm{m})=\mathrm{W}$, and Player 1 starts first, he can always win: by taking the number of rocks which lead to the losing position of our opponent.

012345						
0		W	L	W		L W
	W	W	W	W		W W
2	L	W	L	W		L W
3	W	W	W	W		W
4	L	W	L	W		L W
5	W	W	W			

> If $R(n, m)=L$, then Player 1 can only hope that Player 2 does not use the same table, and makes a mistake.

Winning strategy: example

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$							
0		W	L	W	L		W
	W	W	W	W	W		W
2	L	W	L	W	L		W
3	W	W	W	W	W		W
4	L	W	L	W	L		
5	W	W	W	W	W		

Player 1 takes (1,1).

Winning strategy example

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$							
0		W	L	W		L	
1	W	W	W	W		W	
2	L	W	L	W		L	
3	W	W	W	W		W	
4	L	W	L	W		L	
5							

Player 1 takes (1,1).
No matter what Player 2 does, it leads to the winning state of Player 1.

Say, Player 2 takes (1,0)

Winning strategy example

Player 2 takes (1,0)

Winning strategy example

Player 1 should take (1,0).

Winning strategy example

Player 1 takes (1,0).

Winning strategy example

	$\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$					
0		W	L	W	L	
1	W	W	W	W	W	
2	L	W	L	W	L	
3						
4						
5						

Player 2 takes (1,1).

Winning strategy example

Player 2 takes (1,1).

Winning strategy example

Player 1 should take (1,1).

Winning strategy example

Player 1 takes (1,1).

At this point the victory for Player 1 is guaranteed.

Identifying patterns

- A faster algorithm relies on the simple pattern in R , and checks if n and m are both even, in which case the player 1 loses.
] However, though FastRocks is more efficient than Rocks, it may be difficult to modify it for similar games.

0		W	L	W	L	W	L	W	L		W	
	W	W	W	W	W	W	W	W	W		W	
2	L	W	L	W	L	W	L	W	L		W	L
3	W	W	W	W	W	W	W	W	W		W	
4	L	W	L	W	L	W	L	W	L		W	
5	W	W	W	W	W	W	W	W	W		W	
6	L	W	L	W	L	W	L	W	L		W	
7	W	W	W	W	W	W	W	W	W		W	
8	L	W	L	W	L	W	L	W	L		W	
9	W	W	W	W	W	W	W	W	W		W	
	L	W	L	W	L	W	L	W	L		W	

