
Dynamic Programming

for Boolean decisions

Lecture 07.03
by Marina Barsky



Mix tapes
Subset sum



Mixtapes

❏ The mixtape problem is inspired by making musical mixes

on cassettes (and later CDs)

❏ Given a set of songs with their durations, the question is 

whether these songs can be divided into 2 subsets where 

the total duration of each subset is the same

https://en.wikipedia.org/wiki/Mixtape


Mixtape problem

Input:   The durations of n songs d1, d2, …, dn

in minutes (integers).

Output: Yes, if the songs can be divided into two 

groups, such that each group has the

same total duration.

No, otherwise.



Sample problem instance

The output for this instance of the problem is 'yes'.  This is 
because the songs can be divided into two groups that both 
have a total duration of 10 min.

1 2 3 4 5 6 7

min 3 2 3 2 2 5 3

A total of 7 songs given with their durations.

3 2 3 2 2 5 3

1 2 3 4 5 6 7

The blue and red songs have the same total duration of 10 min.



DP solution: brainstorming

❏What would help us to know if a set of 
numbers can be divided into 2 subsets with 
equal sums?

❏How can we find out if there is a subset 
with a given sum?

❏What are optimal subproblems? 



Think of an optimal solution to a 
subset sum

❏If there is a subset with total duration D, and it 
contains song i, then there also should be a subset 
with duration D-di

❏As always, we can start by checking if all possible 
durations from 1 to D can be obtained from a 
current set, and we will reuse this knowledge to 
obtain an answer for duration D

di D



Example

❑ First, we compute total duration: 
3+2+1+4+1+5 = 16

❑ The task becomes to find out if there is a subset that sums 
up to 16/2 = 8

❑ We will try methodically to fit each song into the solution, 
checking if the following total durations are possible: 
0,1,2,3,4,5,6,7 and finally 8.

❑ The check will produce a boolean value: Y(True) or N(False)

3 2 1 4 1 5

1 2 3 4 5 6



Create DP table

3 2 1 4 1 5

1 2 3 4 5 6

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3)

d2(2)

d3(1)

d4(4)

d5(1)

d6(5)



Base condition

Is it possible to create a subset with a total duration 0? 

Yes, just do not take any song.

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T

d2(2) T

d3(1) T

d4(4) T

d5(1) T

d6(5) T



What durations are possible with song 1?

Using only the first song with duration 3, is it possible to 
create a subset with a total duration 1,2,3,4…?

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F

d2(2) T

d3(1) T

d4(4) T

d5(1) T

d6(5) T



Using only the first song with duration 3, is it possible to 
create a subset with a total duration 1,2,3,4…?

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F

d2(2) T

d3(1) T

d4(4) T

d5(1) T

d6(5) T

What durations are possible with song 1?



Using only the first song with duration 3, is it possible to 
create a subset with a total duration 1,2,3,4…?

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T

d2(2) T

d3(1) T

d4(4) T

d5(1) T

d6(5) T

What durations are possible with song 1?



Using only the first song with duration 3, is it possible to 
create a subset with a total duration 1,2,3,4…?

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T

d3(1) T

d4(4) T

d5(1) T

d6(5) T

What durations are possible with song 1?



Using only song 1 (duration 3) and/or song 2(duration 2), it is 
still not possible to create a subset with total duration 1.

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F

d3(1) T

d4(4) T

d5(1) T

d6(5) T

What durations are possible with 
songs 1 and 2?



Using only song 1 (duration 3) and song 2(duration 2), it is not 
possible to create a subset with total duration 1, but it is 
possible to create a subset with total duration 2

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T

d3(1) T

d4(4) T

d5(1) T

d6(5) T

What durations are possible with 
songs 1 and 2?



What durations are possible with 
songs 1 and 2?
Using only d1 and d2, can we have a subset with total 
duration 3? 

Yes, we already know that we can do it even without d2

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T

d3(1) T

d4(4) T

d5(1) T

d6(5) T



What durations are possible with 
songs 1 and 2?

How do we check if a subset sum 4 is possible? We know that 
it was False when we used d1 only, so if we use d2, then we 
need to check if a subset of (4-2) was possible. It was not.

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F

d3(1) T

d4(4) T

d5(1) T

d6(5) T



What durations are possible with 
songs 1 and 2?

To check for d=5, take item d2(2) and see if duration 5-2 was 
possible with the previous item(s)

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F T F F F

d3(1) T

d4(4) T

d5(1) T

d6(5) T



Considering songs 1,2, and 3

1,2,3 are possible.  

What about 4? Current item d3 has duration 1. Is it possible 
to have a duration (4-1) with the other 2 items? Yes

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F T F F F

d3(1) T T T T T

d4(4) T

d5(1) T

d6(5) T



Considering songs 1,2, and 3

Using only items d1, d2, d3 we get the following boolean 
answers.

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F T F F F

d3(1) T T T T T T T F F

d4(4) T

d5(1) T

d6(5) T



Considering songs 1,2,3,4

For d4(4) we do not even need to consider this item for 
durations 1,2,3,4,5,6 - we could make these subsets even 
without item d4(4).

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F T F F F

d3(1) T T T T T T T F F

d4(4) T T T T T T T

d5(1) T

d6(5) T



Considering songs 1,2,3,4

What about 7? Fit d4(4) and see if (7-4) was True.

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F T F F F

d3(1) T T T T T T T F F

d4(4) T T T T T T T T

d5(1) T

d6(5) T



Considering songs 1,2,3,4

Same holds for total duration 8.

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F T F F F

d3(1) T T T T T T T F F

d4(4) T T T T T T T T T

d5(1) T

d6(5) T



Is total duration 8 possible?

At this point we can stop. We know that it is possible to form 
a subset with a total duration 8 even using only the first 4 
items. But what is this subset?

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F T F F F

d3(1) T T T T T T T F F

d4(4) T T T T T T T T T

d5(1) T

d6(5) T



Recovering the subset with sum 8: 
trace back

The subset clearly includes item d4 - without it 8 was not 
possible

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F T F F F

d3(1) T T T T T T T F F

d4(4) T T T T T T T T T

d5(1) T

d6(5) T



Recovering the subset with sum 8: 
trace back

If it includes item 4, we need to look at total duration (8-4). 
This one only became True when we added item d3.

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F T F F F

d3(1) T T T T T T T F F

d4(4) T T T T T T T T T

d5(1) T

d6(5) T



Recovering the subset with sum 8: 
trace back

If the solution includes item d3(1), we need to look at total 
duration (4-1). This one is True because a previous item 
produced True. This item was d1(3)

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F T F F F

d3(1) T T T T T T T F F

d4(4) T T T T T T T T T

d5(1) T

d6(5) T



Answer: Yes, it is possible to create 2 
subsets with equal total duration

d1(3) + d3(1) + d4(4) = d2(2) + d5(1) + d6(5)

3 + 1 + 4 = 2 + 1 + 5

Total 

duration→
0 1 2 3 4 5 6 7 8

d1(3) T F F T F F F F F

d2(2) T F T T F T F F F

d3(1) T T T T T T T F F

d4(4) T T T T T T T T T

d5(1) T

d6(5) T



Game of Rocks
Optimal game strategy



Game: 1-2 rocks

• 2 players

• 2 piles of rocks: 

with n and m rocks respectively

• Each  turn, one player may take either 1 rock (from 
either pile) or 2 rocks  (one from each pile)

• Once the rocks are taken, they are removed from  
play 

• The player that takes the last rock wins



Winning strategy with DP

❏To find the winning strategy for the m + n game, 
we first construct an mxn table R.

❏ If Player 1 can always win the n + m game, then we 
would say R(n, m) =  W , but if Player 1 has no 
winning strategy against a player that always  
makes the right moves, we would write R(n, m) = L. 

❏Computing R(n, m)  for arbitrary n and m seems 
difficult, but we can build on smaller values. 



DP table for game outcomes

❑ Construct an mxn table R.

❑ Example: let m=n=10.

0

1

2

3

4

5

6

7

8

9

10

0   1   2   3   4   5   6   7   8   9  10



Simple subproblems first

W
W W

0

1

2

3

4

5

6

7

8

9

10

0   1   2   3   4   5   6   7   8   9  10
➢ Notably R(0, 1), R(1, 0), 

and R(1, 1), are clearly 
winning  propositions 
for Player 1 since with a 
single move Player 1 can 
win. 

➢ Thus,  we fill in entries 
(1, 1) , (0, 1), and (1, 0) 
as W.



Solve larger subproblems based on 
solutions to the smaller problems

W L
W W
L

0

1

2

3

4

5

6

7

8

9

10

0   1   2   3   4   5   6   7   8   9  10
➢ In the (2, 0) case, the 

only move that Player 1  
can make leads to the 
(1, 0) case that, as we 
already know, is a 
winning  position for 
his opponent. 

➢ A similar analysis 
applies to the (0, 2) 
case.



Solve larger subproblems based on 
solutions to the smaller problems

W L
W W W
L W

0

1

2

3

4

5

6

7

8

9

10

0   1   2   3   4   5   6   7   8   9  10
➢ In the (2, 1) case, Player 1 

can make 3 different 
moves that lead  
respectively to the games 
of (1, 1), (2, 0), or (1, 0). 

➢ One of these cases, (2, 0),  
leads to a losing position 
for his opponent and 
therefore (2, 1) is a 
winning  position. 

➢ The case (1, 2) is 
symmetric to (2, 1)



Solve larger subproblems based on 
solutions to the smaller problems

W L
W W W
L W L

0

1

2

3

4

5

6

7

8

9

10

0   1   2   3   4   5   6   7   8   9  10
➢ In the (2, 2) case, 

Player 1 can make 
three  different moves 
that lead to entries (2, 
1), (1, 2), and (1, 1).

➢ All of these  entries 
are winning positions 
for his opponent and 
therefore R(2, 2) = L.



Fill DP table with game outcomes

W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L

0

1

2

3

4

5

6

7

8

9

10

0   1   2   3   4   5   6   7   8   9  10➢ We can proceed filling in R
in this way by noticing 
that for the entry  (i, j) to 
be L, all the entries above, 
diagonally to the left, and 
directly to the  left, must 
be W. 

➢ These entries:

((i −1, j), (i −1, j −1), (i, j −1)) 
correspond  to the three 
possible moves that Player 1 
can make. 



Rocks: winning strategy 

❑ The Rocks algorithm determines if Player 1 wins 
or loses. 

❑ If Player 1 wins in an n+m game, Rocks returns W. 
If Player 1 loses, Rocks returns L.  

❑ We introduce an artificial initial condition, R(0, 0) 
= L to simplify the  pseudocode.



Algorithm Rocks(n, m)
R[0, 0] ← L
for i from 1 to n:                        # initialize rows

if R[i − 1, 0] = W :
R[i, 0] ← L

else:
R[i, 0] ← W

for j from 1 to m:                       # initialize columns  
if R[0, j − 1] = W :

R[0, j] ← L
else:

R[0, j] ← W
for i from 1 to n:  

for j from 1 to m:                   # fill DP table
if R[i − 1, j − 1] = W and R[i, j − 1] = W and R[i − 1, j] = W :

R[i, j]← L  
else:

R[i, j] ← W  
return R[n, m]



Using DP table for best strategy   
or game AI

W L W L W
W W W W W W
L W L W L W
W W W W W W
L W L W L W
W W W W W W

0

1

2

3

4

5

0   1   2   3   4   5   

➢ We can use the DP table to always 
play the winning strategy.

➢ If R(n,m) = W, and Player 1 starts 
first, he can always win: by taking 
the number of rocks which lead to 
the losing position of our opponent.

➢ If R(n,m) = L, then Player 1 can only 
hope that Player 2 does not use the 
same table, and makes a mistake.



Winning strategy: example

W L W L W
W W W W W W
L W L W L W
W W W W W W
L W L W L W
W W W W W W

0

1

2

3

4

5

0   1   2   3   4   5   

Player 1 takes (1,1).



Winning strategy example

W L W L
W W W W W
L W L W L
W W W W W
L W L W L

0

1

2

3

4

5

0   1   2   3   4   5   

Player 1 takes (1,1).

No matter what Player 2 does, it leads to the winning state 
of Player 1.

Say, Player 2 takes (1,0)



Winning strategy example

W L W L
W W W W W
L W L W L
W W W W W

0

1

2

3

4

5

0   1   2   3   4   5   

Player 2 takes (1,0)



Winning strategy example

W L W L
W W W W W
L W L W L
W W W W W

0

1

2

3

4

5

0   1   2   3   4   5   

Player 1 should take (1,0).



Winning strategy example

W L W L
W W W W W
L W L W L
W W W W W

0

1

2

3

4

5

0   1   2   3   4   5   

Player 1 takes (1,0).



Winning strategy example

W L W L
W W W W W
L W L W L
W W W W W

0

1

2

3

4

5

0   1   2   3   4   5   

Player 2 takes (1,1).



Winning strategy example

W L W
W W W W
L W L W L
W W W W W

0

1

2

3

4

5

0   1   2   3   4   5   

Player 2 takes (1,1).



Winning strategy example

W L W
W W W W
L W L W L
W W W W W

0

1

2

3

4

5

0   1   2   3   4   5   

Player 1 should take (1,1).



Winning strategy example

W L
W W W
L W L W L
W W W W W

0

1

2

3

4

5

0   1   2   3   4   5   

Player 1 takes (1,1).

At this point the victory for Player 1 is guaranteed.



Identifying patterns

W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L
W W W W W W W W W W W
L W L W L W L W L W L

0

1

2

3

4

5

6

7

8

9

10

0   1   2   3   4   5   6   7   8   9  10
❑ A faster algorithm 

relies on the simple 
pattern in R, and 
checks if n and m are 
both even, in which 
case the player 1 loses.

❑ However, though 
FastRocks is more 
efficient than Rocks, it 
may be difficult to 
modify it for similar 
games.


